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1 Introduction

In the first phase of CESAR, the performance analysis task focused on understanding the baseline
performance characteristics of mocfe bone — studying its behavior under different parallelization
scenarios and comparing its scaling behavior to the MOCFE solver in the main application, UNIC.
The results will help drive the co-design process for this application, which is one of the three target
applications in CESAR, and will help identify current and future scaling bottlenecks.

2 Degrees of Parallelism in mocfe bone

There are three different dimensions along which MOCFE (and mocfe bone) can be parallelized:
space, angle and energy. Accordingly, mocfe bone takes as input the size of the mesh, the number
of angles and the number of energy groups. Table 1 lists the arguments to the proxy-app and their
definitions.

Argument Detailed Explanation

MeshScale size of mesh in one dimension (on each MPI process)
ParallelInX number of processes in X
ParallelInY number of processes in Y
ParallelInZ number of processes in Z
Angle Visible total number of angles
AnglesPerProcess number of angles per MPI process
Group Visible total number of energy groups
GroupsPerProcess number of energy groups per MPI process

Table 1: Command line arguments to mocfe bone

The mesh scale and the number of processors used in each dimension together define the un-
derlying physical domain and its size. Additionally, the number of angles defines the number of
directions from which the trajectories intersect the physical domain. Energy groups, are loosely
coupled and can be parallelized across processors.

†This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-TR-594552).



3 Sequential Performance

As part of the co-design effort, we have been running mocfe bone on Blue Gene/P (Challenger/
Intrepid) and Blue Gene/Q (Vesta) at ANL and a Xeon-Infiniband cluster (Cab) at LLNL. We first
looked at the instruction mix for the proxy-app when doing parallelization in angles, energy, space
or a combination of these. Table 2 presents the number of branches, loads, stores, cache misses and
flops per cycle for different configurations.

Run configuration 1/16/1 1/16/8 32/16/1 32/16/8

Branches 0.362 0.363 0.522 0.731
Loads 0.061 0.061 0.034 0.019
Stores 0.027 0.027 0.021 0.011
Cache misses 0.003 0.003 0.055 0.112
Flops 0.133 0.133 0.135 0.127

Table 2: Instruction mix for sequential runs on one node of Blue Gene/P (SMP mode).

The three numbers in each column of the first row (separated by /) represent the mesh size,
number of angles and number of energy groups respectively. For example, the first column represents
a run with a mesh of 13, 16 angles and 1 energy group, and the last column represents a run with
a mesh of 323, 16 angles and 8 energy groups. It is evident that the number of branches per cycle
is high for all configurations and increases with the number of energy groups and mesh size. The
number of flops per cycle does not change irrespective of the mesh size, however, the number of
cache misses increases drastically for a mesh of 323 instead of 13.
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Figure 1: From top left to bottom right: number of interactions, hardware counter data showing
loads, stores, cache misses, branches and total flops per cycle mapped to the 16×16 mesh topology.



4 Performance Analysis through Visualizations

We studied the performance of mocfe bone with a parallel domain decomposition in two dimensions
instead of three on 256 processors (by keeping the Z dimension of processors, i.e., the ParallelInZ

parameter at 1). We used a mesh size of 323 on each processor with a parallel decomposition of
MPI processes of 16× 16× 1. The number of angles and energy groups was 16 and 8 respectively.

The top left graphic in Figure 1 shows the application space and the associated workload in terms
of the number of interactions mapped to the underlying 16× 16 mesh. Other code characteristics
(like number of trajectories) show an almost identical distribution. To study the correlation of
hardware counter values for loads, stores, branches, cache misses and floating point operations (as
we presented them above for the sequential case), we map the values obtained on each node to the
same domain (see rest of Figure 1).

We can clearly see that the structure of the problem directly matches the performance char-
acteristics. While the number of floating point operations directly correlates with the work in the
simulation domain, loads, stores and branches are inversely related. The cache miss pattern is more
involved and needs further exploration. The problem boundaries require more branches, loads, and
stores and less flops.

5 Scaling Properties

We further studied the strong scaling performance of mocfe bone to validate it’s performance
against that of MOCFE. We used a mesh of 323 on one node and did strong scaling in space
(keeping the global mesh size the same and reducing the mesh size on each processor by half as we
doubled the number of processors). The number of angles and energy groups was fixed at 16 and
8 respectively and the trajectory spacing was 0.01cm2 to match the existing MOCFE data.
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Figure 2: Strong scaling efficiency of mocfe bone compared to MOCFE

Figure 2 (left) shows the strong scaling performance of mocfe bone running from 1 to 64 nodes
on Blue Gene/P, Blue Gene/Q and Cab. Figure 2 (right) compares its efficiency with that of
MOCFE. We see a similar scaling behavior on all three platforms. Compared to MOCFE, we see a
reasonable match for lower node counts, but for larger node counts trends seem to diverge (based
on the data from MOCFE that we currently have). These results are not surprising, since the
fundamental structure of MOCFE and mocfe bone is different: while the computation being done
is very similar, the codes perform them on different domains. MOCFE is an unstructured code,
while mocfe bone is structured. We therefore will need a second proxy application for this code
that can mimic this behavior and provide input on how to optimize scaling.


